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An axisymmetric Boussinesq wave 
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(Received 24 December 1976 and in revised form 27 June 1977) 

An axisymmetric gravity wave, for which each of nonlinearity, dispersion and radial 
spreading is weak but significant, is determined as a similarity solution with slowly 
varying amplitude ZYa and length scale 1, where a/d a (r/d)-#, l /d cc (r/d)*, r is the 
radius, d is the depth, and Y is the family parameter of the solutions. It is shown that 
the free-surface displacement q(r ,  t )  is either a wave of elevation (7 2 0) or a wave of 
depression (7 < 0) and that (Jql/a)* satisfies a Painlev6 equation that is a nonlinear 
generalization of Airy’s equation. Representative numerical solutions and asymptotic 
approximations for small and large Y are presented. It is shown that the similarity 
solution conserves energy but not mass, in consequence of which (in order to obtain a 
complete solution to a well-posed initial-value problem) it must either be accompanied 
by some other component or components or be driven by a source (or sink) in some 
interior domain in which the implicit restriction r B d is violated. A linear model is 
developed that is valid for r 5 d and compensates for the mass defect of, and matches, 
the nonlinear similarity solution for 19’1 -g 1.  

1. Introduction 
I consider here an axisymmetric similarity solution of the two-dimensional 

Boussinesq equations for gravity waves in water of uniform depth on the hypothesis 
that each of nonlinearity, dispersion and geometrical spreading is weak but of uniform 
relative strength - or, equivalently (see below), that nonlinearity and dispersion main- 
tain a uniform balance and that the energy of the wave is conserved. 

Let a and 1 be amplitude and length scales, d the quiescent depth and r the radius. 
Nonlinearity, dispersion and spreading are measured by ald, (d/1)2 and llr, respectively, 
and radial invariance of their relative magnitudes implies a/d cc (r/d)-f and 
l/d oc (r /d) i .  A convenient (for the subsequent development) scaling is 

a/d = +(2r/d)-t ,  (d/Z)2 = ( 2 r / d ) 3 ,  (1.1 a, b )  

and the corresponding similarity solution may be posited in the form? 

r ( r , t )  = a(r )N(z ) ,  z = ( r - ~ ) / l ( r ) ,  7 = (gd)Jt, (I .2a, b, c )  

where 7 is the free-surface displacement, t is the time, z is a phase variable, and N 
describes the wave profile. The (dimensionless) inverse wave speed is given by 

(gd)*/c = (87/8r), = Z(8z/ar), = 1 - $(lz/r) ,  (1.3) 

t The similarity formulation (1.2) remains formally valid under the transformation 7 + - 7  

and may be used to describe incoming waves; cf. Cumberbatch (1977). Numerical solutions for 
a cylindrically converging ‘solitary wave’ are given by Chwang & Wu (1976), but they do not 
invoke similarity. 
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which approximates unity if ( r  - 71 < r .  The requirement that both nonlinearity and 
dispersion be weak is satisfied only if r ld B 1; accordingly, Ilr = (2d21r2)* < 1 and a(r )  
and l ( r )  are slowly varying vis-a-vis N ( z )  if z = O(1). The description, which is asymp- 
totic, evidently fails for r .J 0 and may not remain uniformly valid as z 4 - 00 (there is 
no corresponding difficulty for z .f co by virtue of the exponential decay of N in that 
limit). 

The actual amplitude of the wave is aN,, where N, = iVmax, and the corresponding 
similarity parameter for the family of solutions described by (1.2) is (the properly 
scaled measure of nonlinearity/dispersion) 

aN112/d3 = QNl 9’. (1.4) 

pg(aN,)21r = &Y2pgd4 (1.5) 

The energy of the wave is proportional to 

and therefore is conserved, as anticipated. On the other hand, N ( z )  proves to be either 
non-negative ( N  2 0 )  or non-positive ( N  3 0 ) ,  and the volumetric displacement of 
the wave, which is proportional to 

aNllr = Yd3(r2/2d2)+,  (1.6) 

is not conserved (although its divergence as r f co with z fixed does not imply divergence 
as T t 00 with t fixed). 

This last difficulty, together with the limitations cited in the penultimate para- 
graph, suggests that (1.2) cannot, by itself, represent a complete solution of a well- 
posed initial-value problem. It may, however, be an asymptotic component of such 
a solution, in which the mass defect implied by (1.6) is compensated either by some 
other component or components or by a source (or sink) in some interior domain. 
It may be compared with the one-dimensional similarity solution of the Korteweg- 
deVries equation that was discovered by Berezin & Karpman (1964, 1967) and has 
since been studied by Ablowitz & Newel1 (1973), Ablowitz & Segur (1977), Xles 
(1977b) and Rosales (1977). This solution, like the present solution, raises questions 
about uniform validity in the far region of its dispersive tail; moreover, it may be 
accompanied by one or more so1itons.l The present solution is especially interesting 
in this context if 7 6 0,  since it could appear as an asymptotic component of a solution 
that also comprises one or more solitary waves of positive elevation [a solitary wave 
of depression is impossible, since nonlinearity and dispersion then both act to decrease 
the wave speed, and the wave necessarily breaks up into a decaying wave train, 
as observed by Scott Russell (1844)l. In  any event, nonlinear solutions for two- 
dimensional wave motion are not easily come by, and I therefore present it as of some 
intrinsic interest and as a possible stimulus for further research. 

[I originally undertook the study of (1.2) in an attempt to describe the tendency 
of a solitary wave to acquire a dispersive tail in a channel of slowly varying breadth 
b, for which the joint hypothesis of a balance between weak nonlinearity and dis- 
persion and of conservation of energy implies a cc b-4 and I cc b* (Miles 1 9 7 7 ~ ) .  The 
first peak of the non-negative solution does have a solitary-wave profile (see $ 5 )  if 

t Indeed, it may be shown that the solution of the KdV equation for any initial displacement 
of zero volume, which constraint is implied by conservation of mass and the measurement of 
wave displacement from the surface of static equilibrium, comprises at least one soliton. 



An axisymmetric Boussinesq wave 183 

Nl 2 3, but the amplitudes of the subsequent peaks decay only slowly (ultimately 
like 1~1-4 as z J. -a) from the maximum, and the solution for NJ $ 1 is more appro- 
priately described as a slowly varying cnoidal wave.] 

The analysis proceeds as follows. In  92, I determine a third-order, nonlinear 
differential equation for N(z) that admits a one-parameter (Nl or 9’) family of soh- 
tions that are evanescent at  z = co. I then show that these solutions are either non- 
negative (N 2 0) or non-positive (N < 0). In $3, I show that the transformation 
N = f F2(z)  reduces the third-order equation for AT to a second Painlev6 equation for 
F, which is a nonlinear generalization of Airy’s equation and also arises in other 
recent investigations of nonlinear wave motion (see Miles 1977 b for references). I give 
representative numerical results in 0 3 and cite appropriate asymptotic approxima- 
tions for (91 < 1 in $4 and for (9’1 $ 1 in $5 (the latter are given explicitly only 
for N > 0). Perhaps the most interesting feature of the solutions for both large and 
small Y is a cumulative, nonlinear phase shift (relative to the Airy phase of linear 
theory) in the dispersive tail of the wave. 

Finally, in $6, I match the solution for 19’1 < 1 to a solution of the linearized equa- 
tions, in which nonlinearity is neglected but radial spreading is not assumed to be 
weak (so that the solution remains valid as r J. 0 ) ,  and introduce a source (or sink) a t  
r = 0 to provide for the volumetric defect in the outgoing wave. This suggests a possible 
experimental configuration, but it is presented primarily as a model that renders the 
similarity solution physically plausible for sufficiently small Y .  The matching cannot 
be carried through for large 9’ (except for r f 03, where nonlinear effects are necessarily 
small by virtue of the exponential decay), however, and the physical significance of 
the similarity solution is correspondingly more uncertain in that regime. 

2. Similarity solution of Boussinesq equations 

depth d may be placed in the form (Whitham 1967) 
The Boussinesq equations for a laterally unbounded body of water of quiescent 

and 

where 5 and 7 are the velocity potent,ial at, and the displacement of, the free surface. 
Eliminating 5 between (2.1 a ,  b )  on the assumptions that the motion is axisymmetric 
and slowly varying in a reference frame expanding radially with the speed (gd)$ and 
that geometrical spreading is weak (rJd >> l ) ,  we obtain t,he cylindrical Korteweg- 
deVries equation (cf. Maxon 8.z Viecelli 1974) 

r7+rr+~r-1~+6d-1~rt+Qd2rrrr  = 0 [7 (gd)’tI. (2.2) 

Following (1.2), we posit the similarity solution 

r ( r , t )  = @(2r/d)-ON(z), Z = (2d2r)-3(r-7) (2.3a, b )  
in (2.2) to obtain 

to within 1 + O(d$/rg).  We seek the solution of (2.4) subject to the null conditions 

N”’ + 12”’ - 4zN’ - 2 N  = 0 (2.4) 

zN,  N ’ ,  N”+ 0 (z-+co).  (2.5) 
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We remark that the assumption of inward, rather than outward, wave propagation 
requires only that the sign of 7 be changed in (2.2) and (2.3b) and leaves (2.4) 
unchanged. 

Integrating (2 .4)  once, multiplying the result by 2N’, integrating again, and in- 
voking (2 .5) ,  we obtain 

and 

= 4 N ( z N - N ~ + / z a N d r )  

Now suppose that N > 0 and o(S / z )  as z + co. It then may be inferred from (2 .6)  and 
(2 .7)  that N has a turning point, a first maximum and a first zero a t  z = z2, z1 and zo, 
respectively, where z2 > z1 > z,,, and that the first minimum of N coincides with the 
first zero ( N ‘  = 0 and N “  > 0 for N = 0 a t  z = zo)  and similarly for all following zeros; 
accordingly N 2 0 for all z. It also follows that minima are possible only if N = 0, 
since N’ = 0 and N > 0 imply N ”  < 0 and therefore correspond to a maximum. 

The situation is more delicate if N < 0 as z f 00, since the existence of a turning point 
then can be definitely established only for sufficiently weak nonlinearity (see $3);  
however, if N does have zeros, they must coincide with its maxima, and N < 0 for all z. 

3. Reduction to PainlevC equation 
A consideration of the known solutions of the linear differential equation obtained 

by neglecting 12NN’ in (2 .4) ,  together with the hypothesis that N is either non- 
negative or non-positive, suggests the transformation 

N = - + F2(z) ,  (3.1)* 

where, here and subsequently, alternative signs and subscripts are vertically ordered. 
The transformed equation is 

F ( F ” - z F ) ’ + ~ F ’ ( F ” - z F )  12F3F‘ = 0 .  (3% 

Multiplying (3.2) by F2,  integrating, invoking the null conditions (2.5) a t  z = 00, and 
dividing the result by F3, we obtain the Painlev6 equation 

F”-zF  _+2F3 = 0.  (3.3)* 

That solution which vanishes for z f 03 has the asymptotic approximations 

F ( z )  - AAi(z) ( z  & 2F2) (3.4a) 

(3.4b) 

We may assume A > 0,  since (3.1) and (3.3) are invariant under the transformation 

= $n-&Az-*exp ( - 82%) (S + o(z-4)) ( z  + 00). 

F - t  -F. 
It follows from (2 .3 ) ,  (3.1) and (3.4b) that  

7 ( ~ 2 d 2 / 3 n ) ( 2 r ( ~  - ~ ) } - t  exp { - $(2d2r)-3(r - 7)3}  (r B r - 7 B I). (3.5)* 

We remark that (3.5) is essentially a linear approximation (nonlinear effects are 
insignificant for z & 1); see $6. 
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FIGURE 1. The normalized profiles N / N ,  = (F+/P,)2for (a) A = 0 (---), 1 (-) and ( b )  A = 10 
(---), 10% (-), as determined by the numerical solution of (3.3)+ and (3.4). 
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FIGURE 2. The normalized profiles N/]N,I = - (P-/FJ2 for A = 0 (---), 0.7 (-) and 0.9 
(-.-), as determined by the numerical solution of (3.3)- and (3.4). 
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FIQURE 3. The parmeter P,/A for F ,  (-) and F -  (---); 
see last paragraph in $3. 
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FIGURE 4. The largest zeros of B,, F; and F; : zo (-), z, (---) and z2 (---). 

The numerical integration of (3.3)+ in the direction of decreasing z, using either 
( 3 . 4 ~ )  or (3 .4b )  to obtain starting values of P and F' a t  a sufficiently large value of z, 
is both stable and economical and yields a one-parameter family of solutions with A 
as the family parameter. Representative results are plotted in figures 1, 3 and 4. See 
Miles (19776) for further results. 

The corresponding integration of (3 .3)-  and (3 .4 )  is possible only for 0 < A < 1, 
since the solution is singular a t  some finite real value of z if A > 1. Representative 
results are plotted in figures 2 and 3. See Miles (1977b) and Rosales (1977) for further 
results. 

The parameter Fl/A, in terms of which [see (1.4)] 

9 = ++(Fl/A)2A2, ( 3 4 *  

is plotted in figure 3.  [Note added in press: I have since found that Fl /d , ,  where 
1~~42 = +In (1 + A t ) ,  varies by less than 10% over 0 < A ,  < 1OS/0.999.] 

4. The limit A J. 0 
The solution of (3.3)* and (3 .4 )  may be developed as a perturbation about the linear 

approximation AAi(z) if A 5 1. The interesting regime is -2 9 1, wherein the 
straightforward expansion in powers of A is not uniformly valid but can be so rendered 
to obtain (Miles 1977b; the approximation is within a few per cent of the results of 
numerical integration for z < - 1 and either A 5 1 for F+ or A 5 0.7 for K )  

( z  J. - a), (4.1)* 
where 

(4.2) 

P(z)  = n-*A( 1 T i A 2 )  ( - z)-k sin (x + A2A)  + O(A4, Az-P) 

x = 3( - z)* + & 1 ~  = f(2d2r)-a(, - T ) #  + 477 
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3 
- i ( z - -  - 1  - 1 )  

FIGURE 5. Comparison of the normalized profile NIN, = (F+/F,)* (-) with the solitary-wave 
profile implied by (5.1) (---) for (a) zL = 5.4 ( A  = lo6) and (b )  z1 = 3.3 ( A  = lo3). 
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is the usual Airy phase, and 

A = (41377) + (3/4n) In ( - z )  = (41377) + (31477) In ((2d2r)-*(7 - r ) }  (4-3) 

is the cumulative (normalized) phase shift induced by nonlinearity. Substituting 
N = & F 2  from (4.1) into (2.3), we obtain [cf. (3.5)] 

7 N (4A2d2/3n)(l T ~ A 2 ) ( 2 r ( 7 - r ) } - * s i n 2 ( ~ + A 2 A )  ( r  + 7-7- $ I). (4.4)k 

5. ThelimitAfco 

wave-front maximum, Fl 5 F(z,) ,  is described by (Miles 19773) 
The asymptotic solution of (3.3)+ and (3.4) for A f co in the neighbourhood of the 

P+(z) N zf sech{zf(z - z,)] + O(z,l) [zl 1.00, z - z1 = O(zf)], (5.1) 

the matching of which to (3.4b) yields 

A 4niztexp (3.t) ( z l?  a). (5.2) 

The normalized profile F2/FT given by (5.1), which corresponds to that of a one- 
dimensional solitary wave, is compared with the results of the numerical integration 
in figure 5. 

The oscillatory tail of F+ may be described rather accurately by a slowly varying 
cnoidal wave if A 2 10 (Miles 1977b), and has the limiting form 

P+ N d(-z)-~sin[~(-z)~+d2{~ln(-z)-lnd+1.683}] ( - 2  BzlB 1) ,  (5.3) 

where d= d { l n ( I  +A2))* N n-*(!jz~+ln(l6nz~)) (~~1.~0). (5.4) 

Similar results are available for J” (Miles 1 q 7 b ) .  

6. The linear regime 
The volumetric defect implied by the similarity solution (2.3) suggests the existence 

of a source in some interior domain in which (2.2) is invalid. The lateral dimensions 
of this domain are irrelevant (in the present context) in so far as they are sufficiently 
small, and we therefore assume that the source is concentrated at  r = 0 (a more detailed 
analysis for a distributed source reveals that only its total volumetric input is sig- 
nificant for the asymptotic solution that ultimately evolves in r B 2). We also assume 
that, a t  least for A < 1 (see below), the nonlinear terms can be neglected during the 
initial evolution, so that we may replace (2.1) by 

and 
&+s7 = 0 

Tt +dV2E+ +d3V4[ = QS(r), 

( 6 . 1 ~ )  

(6.1 b )  

where 6(r) is the two-dimensional delta function, and Q is the volumetric rate of the 
source. We choose the initial conditions 
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and proceed on the hypothesis that Q is independent oft. The required solution, which 
may be obtained through a Hankel transformation with respect to r and a Laplace 
transformation with respect to t ,  is given by 

(6.4a, b )  

and O(kad2) terms have been neglected in the amplitude but retained in the phase 
(dispersion is finite but weak). 

The solution (6.3) can be matched to the similarity solution (2.3) in r 9 r - r B 1. 
Letting r t 00, invoking 

carrying out a saddle-point approximation, and approximating r by r except in r - r ,  
we obtain 

(6.7) 

Comparing (6.7) to (3.5), we obtain 

7 N 92{2r(r - r)}-*exp { - $(2d2r)-t(r - .)a> ( r  B r - r B I ) .  

where Q 2 0 corresponds to 7 2 0. 
The corresponding approximation to (6.6) for r 9 r - r  9 1 is dominated by the 

contributions from the singular point a t  k = 0 and the point of stationary phase at  
kd = {2(r - r)/r}b. Following the procedure described by Erd6Iyi (1956, $2.9), approxi- 
mating r by r except in 7 - r ,  and introducing x from (4.2b), we obtain 

7 - 2?{+r(r - ,)}-a sin2X (I Q r - r Q T ) ,  (6.9) 

which matches (4.4) in the limit A J. 0 if (6.8) holds. On the other hand (and not 
unexpectedly), it cannot be matched to the profile implied by (5.3). 

If r >> r, so that the inequality 7 - r < r is violated, the integral in (6.3) has no point 
of stationary phase, and the asymptotic approximation is dominated by the end point 
at k = 0. The resulting approximation is 

7 - 2?(r2- r2)-+ (r >> r ,  d) ,  (6.10) 

which provides a description of the ultimate decay of the wave in the neighbourhood 
of r = 0 (the retention of r2 vis-d-vis r 2  in the radical is consistent with the neglect of 
higher-order terms in 117 if r B d). It is curious that 7 - 9 / r  a t  r = 0 despite the con- 
tinuing action of the source at that point. 
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Science Foundation, NSF Grant OCE74-23791, and by the Office of Naval Research 
under Contract N00014-76-C-0025. I am indebted to Professor Whitham for pointing 
out that the similarity solution (1.2) may be negative as well as positive and for 
emphasizing the difficulties associated with the volumetric defect implied by either 
the non-negative or non-positive character of the wave. 
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